Breaking News

Receive all updates via Facebook. Just Click the Like Button Below...

July 6, 2013

speaker

Speaker


A loudspeaker (or "speaker") is an electroacoustic transducer that produces sound in response to an electrical audio signal input. Non-electrical loudspeakers were developed as accessories to telephone systems, but electronic amplification by vacuum tube made loudspeakers more generally useful. The most common form of loudspeaker uses a paper cone supporting a voice coil electromagnet acting on a permanent magnet, but many other types exist. Where high fidelity reproduction of sound is required, multiple loudspeakers may be used, each reproducing a part of the audible frequency range. Miniature loudspeakers are found in devices such as radio and TV receivers, and many forms of music players. Larger loudspeaker systems are used for music, sound reinforcement in theatres and concerts.

      The term "loudspeaker" may refer to individual transducers (known as "drivers") or to complete speaker systems consisting of an enclosure including one or more drivers. To adequately reproduce a wide range of frequencies, most loudspeaker systems employ more than one driver, particularly for higher sound pressure level or maximum accuracy. Individual drivers are used to reproduce different frequency ranges. The drivers are named subwoofers (for very low frequencies); woofers (low frequencies); mid-range speakers (middle frequencies); tweeters (high frequencies); and sometimes supertweeters, optimized for the highest audible frequencies. The terms for different speaker drivers differ, depending on the application. In two-way systems there is no mid-range driver, so the task of reproducing the mid-range sounds falls upon the woofer and tweeter. Home stereos use the designation "tweeter" for the high frequency driver, while professional concert systems may designate them as "HF" or "highs". When multiple drivers are used in a system, a "filter network", called a crossover, separates the incoming signal into different frequency ranges and routes them to the appropriate driver. A loudspeaker system with n separate frequency bands is described as "n-way speakers": a two-way system will have a woofer and a tweeter; a three-way system employs a woofer, a mid-range, and a tweeter. Loudspeakers were described as "dynamic" to distinguish them from the earlier moving iron speaker, or speakers using piezoelectric or electrostatic systems as opposed to a voice coil that moves through a steady magnetic field.

Driver design


The most common type of driver, commonly called a dynamic loudspeaker, uses a lightweight diaphragm, or cone, connected to a rigid basket, or frame, via a flexible suspension, commonly called a spider, that constrains a voice coil to move axially through a cylindrical magnetic gap. When an electrical signal is applied to the voice coil, a magnetic field is created by the electric current in the voice coil, making it a variable electromagnet. The coil and the driver's magnetic system interact, generating a mechanical force that causes the coil (and thus, the attached cone) to move back and forth, thereby reproducing sound under the control of the applied electrical signal coming from the amplifier. The following is a description of the individual components of this type of loudspeaker.
The diaphragm is usually manufactured with a cone- or dome-shaped profile. A variety of different materials may be used, but the most common are paper, plastic, and metal. The ideal material would be 1) rigid, to prevent uncontrolled cone motions; 2) have low mass, to minimize starting force requirements and energy storage issues; 3) be well damped, to reduce vibrations continuing after the signal has stopped with little or no audible ringing due to its resonance frequency as determined by its usage. In practice, all three of these criteria cannot be met simultaneously using existing materials; thus, driver design involves trade-offs. For example, paper is light and typically well damped, but is not stiff; metal may be stiff and light, but it usually has poor damping; plastic can be light, but typically, the stiffer it is made, the poorer the damping. As a result, many cones are made of some sort of composite material. For example, a cone might be made of cellulose paper, into which some carbon fiber, Kevlar, glass, hemp or bamboo fibers have been added; or it might use a honeycomb sandwich construction; or a coating might be applied to it so as to provide additional stiffening or damping.
The chassis, frame, or basket, is designed to be rigid, avoiding deformation that could change critical alignments with the magnet gap, perhaps causing the voice coil to rub against the sides of the gap. Chassis are typically cast from aluminum alloy, or stamped from thin steel sheet, although molded plastic and damped plastic compound baskets are becoming common, especially for inexpensive, low-mass drivers. Metallic chassis can play an important role in conducting heat away from the voice coil; heating during operation changes resistance, causing physical dimensional changes, and if extreme, may even demagnetize permanent magnets.
The suspension system keeps the coil centered in the gap and provides a restoring (centering) force that returns the cone to a neutral position after moving. A typical suspension system consists of two parts: the spider, which connects the diaphragm or voice coil to the frame and provides the majority of the restoring force, and the surround, which helps center the coil/cone assembly and allows free pistonic motion aligned with the magnetic gap. The spider is usually made of a corrugated fabric disk, impregnated with a stiffening resin. The name comes from the shape of early suspensions, which were two concentric rings of Bakelite material, joined by six or eight curved "legs." Variations of this topology included the addition of a felt disc to provide a barrier to particles that might otherwise cause the voice coil to rub. The German firm Rulik still offers drivers with uncommon spiders made of wood.
The cone surround can be rubber or polyester foam, or a ring of corrugated, resin coated fabric; it is attached to both the outer diaphragm circumference and to the frame. These different surround materials, their shape and treatment can dramatically affect the acoustic output of a driver; each class and implementation having advantages and disadvantages. Polyester foam, for example, is lightweight and economical, but is degraded by exposure to ozone, UV light, humidity and elevated temperatures, limiting its useful life to about 15 years.
The wire in a voice coil is usually made of copper, though aluminum—and, rarely, silver—may be used. The advantage of aluminum is its light weight, which raises the resonant frequency of the voice coil and allows it to respond more easily to higher frequencies. A disadvantage of aluminum is that it is not easily soldered, and so connections are instead often crimped together and sealed. These connections can corrode and fail in time. Voice-coil wire cross sections can be circular, rectangular, or hexagonal, giving varying amounts of wire volume coverage in the magnetic gap space. The coil is oriented co-axially inside the gap; it moves back and forth within a small circular volume (a hole, slot, or groove) in the magnetic structure. The gap establishes a concentrated magnetic field between the two poles of a permanent magnet; the outside of the gap being one pole, and the center post (called the pole piece) being the other. The pole piece and backplate are often a single piece, called the poleplate or yoke.
Modern driver magnets are almost always permanent and made of ceramic, ferrite, Alnico, or, more recently, rare earth such as neodymium and Samarium cobalt. A trend in design—due to increases in transportation costs and a desire for smaller, lighter devices (as in many home theater multi-speaker installations)—is the use of the last instead of heavier ferrite types. Very few manufacturers still produce electrodynamic loudspeakers with electrically powered field coils, as was common in the earliest designs (one such is French). When high field-strength permanent magnets became available, Alnico, an alloy of aluminum, nickel, and cobalt became popular, since it dispensed with the power supply problems of field-coil drivers. Alnico was used for almost exclusively until about 1980. Alnico magnets can be partially degaussed (i.e., demagnetized) by accidental 'pops' or 'clicks' caused by loose connections, especially if used with a high power amplifier. This damage can be reversed by "recharging" the magnet.

Wiring connections

Most loudspeakers use two wiring points to connect to the source of the signal (for example, to the audio amplifier or receiver). This is usually done using binding posts or spring clips on the back of the enclosure. If the wires for the left and right speakers (in a stereo setup) are not connected "in phase" with each other (the + and − connections on the speaker and amplifier should be connected + to + and − to −), the loudspeakers are out of phase. Given identical signals, motion in one cone is in the opposite direction of the other. This typically causes monophonic material in a stereo recording to be canceled out, reduced in level, and made more difficult to localize, all due to destructive interference of the sound waves. The cancellation effect is most noticeable at frequencies where the speakers are separated by a quarter wavelength or less; low frequencies are affected the most. This type of wiring error does not damage speakers, but is not optimal.

 Speaker specifications generally include:

  • Speaker or driver type (individual units only) – Full-range, woofer, tweeter, or mid-range.
  • Size of individual drivers. For cone drivers, the quoted size is generally the outside diameter of the basket. However, it may less commonly also be the diameter of the cone surround, measured apex to apex, or the distance from the center of one mounting hole to its opposite. Voice-coil diameter may also be specified. If the loudspeaker has a compression horn driver, the diameter of the horn throat may be given.
  • Rated Power – Nominal (or even continuous) power, and peak (or maximum short-term) power a loudspeaker can handle (i.e., maximum input power before destroying the loudspeaker; it is never the sound output the loudspeaker produces). A driver may be damaged at much less than its rated power if driven past its mechanical limits at lower frequencies.Tweeters can also be damaged by amplifier clipping (amplifier circuits produce large amounts of energy at high frequencies in such cases) or by music or sine wave input at high frequencies. Each of these situations might pass more energy to a tweeter than it can survive without damage. In some jurisdictions, power handling has a legal meaning allowing comparisons between loudspeakers under consideration. Elsewhere, the variety of meanings for power handling capacity can be quite confusing.
  • Impedance – typically 4 Ω (ohms), 8 Ω, etc.
  • Baffle or enclosure type (enclosed systems only) – Sealed, bass reflex, etc.
  • Number of drivers (complete speaker systems only) – two-way, three-way, etc.
and optionally:
  • Crossover frequency(ies) (multi-driver systems only) – The nominal frequency boundaries of the division between drivers.
  • Frequency response – The measured, or specified, output over a specified range of frequencies for a constant input level varied across those frequencies. It sometimes includes a variance limit, such as within "± 2.5 dB."
  • Thiele/Small parameters (individual drivers only) – these include the driver's Fs (resonance frequency), Qts (a driver's Q; more or less, its damping factor at resonant frequency), Vas (the equivalent air compliance volume of the driver), etc.
  • Sensitivity – The sound pressure level produced by a loudspeaker in a non-reverberant environment, often specified in dB and measured at 1 meter with an input of 1 watt (2.83 rms volts into 8 Ω), typically at one or more specified frequencies. Manufacturers often use this rating in marketing material.
  • Maximum sound pressure level – The highest output the loudspeaker can manage, short of damage or not exceeding a particular distortion level. Manufacturers often use this rating in marketing material—commonly without reference to frequency range or distortion level.

No comments :

Designed By Published.. Blogger Templates